

SE - Notes

1

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

Unit - I Basics of Software Engineering

📌 Software

Definition: Software is a collection of programs, data, and documentation that perform
specific tasks on a computer system. It enables users to interact with hardware and perform
desired functions.

Computer software is the product that software professionals build and then support over the
long term.

It also includes a set of documents, such as the software manual, meant for users to
understand the software system. Today’s software comprises the source code, Executable,
Design Documents, Operations and System Manuals and installation and Implementation
Manuals.
Software is described by its capabilities. The capabilities relate to the functions it executes,
the features it provides and the facilities it offers.

Characteristics of Software:

1.​Software is Developed or Engineered, Software is not manufactured:
It is developed through design and coding.The two activities (software development
and hardware manufacturing) are fundamentally different. In both activities, high
quality is achieved through good design, but the manufacturing phase for hardware
can introduce quality problems.

2.​ Software doesn’t “wear out” like hardware and it is not degradable
over a period.

The following figure depicts failure rate as a function of time for hardware. The
relationship often called the “bathtub curve”, indicates that hardware exhibits
relatively high failure rates early in its life.The failure rate curve for software
should take the form of an “idealized curve” as shown in the above
figure. Undiscovered defects will cause high failure rates early in the life
of a program. However, these are corrected and the curve flattens as
shown. Hence the software doesn’t wear out, but it does deteriorate.​

2

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

​

3.​Most of the Software are Custom-built or generic rather than
assembled from existing components: Software can be tailored or

commercially available.Although the industry is moving toward component – based
construction, most software continues to be custom built. A software component should be
designed and implemented so that it can be reused in many different programs.

Other Characteristics are
4.​ Complex: Often contains millions of lines of code.

5.​ Easy to modify: Can be updated with new features or bug fixes.

3

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

6.​ Intangible

Advantages of Software :
●​ Automates manual processes

●​ Increases accuracy and efficiency

●​ Enhances decision-making

●​ Reduces operational costs

Disadvantages of Software:
●​ May contain bugs or vulnerabilities

●​ Needs regular updates and maintenance

●​ Can be expensive to develop

●​ Complex systems may be difficult to manage

Applications:
●​ Education (e-learning platforms)

●​ Business (ERP, accounting software)

●​ Healthcare (EMR systems)

●​ Entertainment (games, streaming)

●​ Communication (chat apps, emails)

📌 Software Engineering as a Layered Approach

4

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

1️ Quality Focus (Base Layer)

This is the foundation of all software engineering activities.

●​ It ensures the final product meets customer requirements and performs reliably.

●​ Quality is maintained through activities like quality assurance (QA), reviews, and
testing.

●​ Without this layer, all other efforts may lead to unreliable or unsatisfactory software.

●​ Total quality management, six sigma and similar philosophies foster a continuous
process improvement culture.

●​ The bedrock that supports software engineering is a quality focus.

2️ Process Layer

This layer defines the framework for managing and controlling the software
development process.

●​ It provides a structured approach using Software Development Life Cycle (SDLC)
models like Waterfall, Agile, Spiral, etc.

●​ Ensures planning, monitoring, and evaluation of all phases in software
development.

●​ The software process forms the basis for management of software projects.

3️ Methods Layer

This layer includes the technical methods used to build software.

●​ Covers requirement analysis, system design, coding, testing, and maintenance.

●​ Methods guide how software is developed technically to ensure correctness and
efficiency.

4️ Tools Layer

5

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

This is the topmost layer, consisting of automated tools that support the methods and
processes.

●​ Tools improve productivity, accuracy, and efficiency.

●​ Examples include IDEs (like VS Code), testing tools (like Selenium), version
control systems (like Git).

📌 3. Attribute of Good Software are

1. Functionality: The ability to perform its intended task

2. Reliability: The probability of failure-free software operation

3. Usability: Ease with which users can operate the software

4. Efficiency: Optimal use of system resources5.

5. Maintainability: Ease of modification and updates

6. Portability: Ability to work across different environments

7. Scalability: Can handle growth in users or data

📌 4. Types of Software
1. System Software:​
It is a collection of programs written to service other programs. Some system software (e.g.,
compilers, editors, and file management utilities) processes complex, but determinate,
information structures. Other systems applications (e.g., operating system components,
drivers, networking software, telecommunications processors) process largely indeterminate
data.

2. Application Software:​
Stand-alone programs that solve a specific business need. Applications in this area process
business or technical data in a way that facilitates business operations or
management/technical decision making

6

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

3. Programming Software:​
Used by developers to write code.​
Examples: Compilers, editors, debuggers.

4. Embedded Software:

Embedded software can perform limited functions (e.g., key pad control for a microwave
oven) or provide significant function and control capability (e.g., digital functions in an
automobile such as fuel control, dashboard displays, and braking systems).​
Used in embedded systems (non-PC devices).​
Examples: Software in washing machines, traffic lights.

5. Web-based Software:

 In their simplest form, WebApps can be little more than a set of linked hypertext files that
present information using text and limited graphics.​
Runs on web browsers and accessed via the internet.​
Examples: Gmail, Google Docs.

6. AI Software:​
Designed to simulate intelligence.​
Examples: Chatbots, recommendation systems.

7. Engineering/scientific software:

Applications range from astronomy to volcanology, from automotive stress analysis to space
shuttle orbital dynamics, and from molecular biology to automated manufacturing

Example: CAD software

7. Product-line software:

Designed to provide a specific capability for use by many different customers.

Product-line software can focus on a limited marketplace (e.g., inventory control products) or
address mass consumer markets (e.g., word processing, spreadsheets,database management).

📘 Software Development Framework

A software development framework defines a standard structure and set of activities to
guide the software development life cycle (SDLC). It ensures that software is built in an
organized, systematic, and efficient manner.

✅ 1. Generic Process Framework Activities

7

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

These are the core activities that are part of almost every software development process,
regardless of the development model (Waterfall, Agile, Spiral, etc.).

🔹 Communication

●​ Involves interacting with stakeholders to understand the requirements.

●​ Includes activities like requirement gathering, meetings, and interviews.

🔹 Planning

●​ Defines a roadmap for the project.

●​ Includes estimating time, cost, resources, and setting milestones.

🔹 Modeling

●​ Focuses on designing the architecture and system structure.

●​ Includes data modeling, process modeling, interface design, etc.

🔹 Construction

●​ Involves actual coding and testing of the software.

●​ Focuses on writing source code, unit testing, integration testing, etc.

🔹 Deployment

●​ Involves delivering the final product to the end-user.

●​ May include installation, user training, and feedback collection.

●​ Updates and patches are handled during post-deployment maintenance.

☂️ Umbrella Activities in Software Engineering

Umbrella activities are supportive tasks that occur throughout the software development
life cycle (SDLC). They ensure that the core development activities are well-managed and
high in quality.

✅ 1. Software Project Tracking and Control

●​ Monitors project progress to ensure it's on time and within budget.

8

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Helps take corrective actions if deviations occur.

✅ 2. Risk Management

●​ Identifies, analyzes, and prepares for potential risks that could impact the project.

●​ Plans strategies to reduce or avoid risks.

✅ 3. Software Quality Assurance (SQA)

●​ Ensures the software meets the defined quality standards.

●​ Includes activities like audits, reviews, and testing.

✅ 4. Formal Technical Reviews (FTRs)

●​ Structured reviews of software artifacts (design, code, documents).

●​ Helps in early error detection and correction.

✅ 5. Measurement and Metrics

●​ Collects quantitative data to assess process and product quality.

●​ Used for improvement, estimation, and evaluation.

✅ 6. Software Configuration Management (SCM)

●​ Manages changes in software versions and components.

●​ Maintains integrity and traceability of project artifacts.

✅ 7. Reusability Management

●​ Identifies and promotes reuse of existing software components.

●​ Saves time and improves reliability.

✅ 8. Documentation
9

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Ensures proper recording of all development activities, plans, and decisions.

●​ Helps in maintenance, training, and future development.

​

​
✅ 1. Software Engineering Core Principles
These principles are fundamental guidelines to help engineers build software that is reliable,
efficient, maintainable, and user-focused.

🔹 1. The Reason It All Exists

●​ Software is created to solve a problem or meet a specific need.

●​ Always focus on adding value to the customer or end-user.

🔹 2. KISS (Keep It Simple, Stupid)

●​ Simple solutions are often better and easier to maintain.

●​ Avoid unnecessary features and complexity.

🔹 3. Maintain the Vision

●​ Keep a clear goal throughout development.

●​ Ensure every team member understands the core purpose of the product.

🔹 4. What You Produce, Others Will Consume
10

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Write clear code and documentation that others (like future developers or testers) can
understand and use.

🔹 5. Be Open to the Future

●​ Design software to be scalable and adaptable, so it can evolve over time without
major rewrites.

🔹 6. Plan Ahead for Reuse

●​ Create modular, well-documented components that can be reused in other projects or
systems.

🔹 7. Think!

●​ Always think before you code. Analyze the problem, assess solutions, and anticipate
challenges.

🛠️ Software Engineering Practices

✅ Communication Practices

Definition: Involves the continuous exchange of accurate and complete information
between stakeholders (clients, users, developers, testers).

Key Points:

●​ Poor communication leads to misunderstood requirements and project failure.

●​ Involves elicitation, clarification, and validation of requirements.

Techniques Used:

●​ Interviews, questionnaires, brainstorming

●​ Use Case Diagrams, User Stories

●​ Prototypes or wireframes for visual understanding

​
​

11

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

​
Communication Principles are:-
1. Listen: Try to focus on the speaker's words.Ask for clarification if something is
unclear, but avoid constant interruptions.
2. Prepare before you communicate: Speed the time to understand the problem
before you meet with others. If necessary, do some research to understand business
domain jargon.
3. Someone should facilitate the activity: Every communication meeting should have
a leader to keep the conversation moving in a productive direction.​
4. Face-to Face communication is best: It usually works better when some other
representation of the relevant information is present. For eg. A participant may create a
document that serves as a focus for discussion.
5. Take notes and document decisions: Someone participating in the communication
should serve as a “recorder” and write down all important points and decisions.
6. Strive for collaboration: Each small collaboration serves to build trust among team
members and creates a common goal for the team.
7. Stay focused; modularize your discussion: The facilitator should keep the
conversation modular; leaving one topic only after it has been resolved.
8. If something is unclear, draw a picture: A sketch or drawing can often provide
clarity when words fail to do the job.
9. A) Once you agree to something, move on. B) If you can’t agree to something,
move on C) If a feature or function is unclear and cannot be clarified at the
moment, move on. : Rather than iterating endlessly, the people who participate should
recognize that many topics require discussion and that “moving on” is sometimes the
best way to achieve communication agility.
10. Negotiation is not a contest or a game. It works best when both parties win: There
are many instances in which you and other stakeholders must negotiate functions and
features, priorities, and delivery dates. ​
​

✅ Planning Practices

Definition: Planning is about defining the scope, timeline, cost, and resources for a software
project.

Objectives:

●​ Identify deliverables and set deadlines

●​ Allocate resources wisely

●​ Minimize risks by anticipating problems

12

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

Key Activities:

●​ Creating a project plan and schedule

●​ Risk identification and mitigation planning

●​ Cost and effort estimation (e.g., using COCOMO model)

Planning Principles:-

1. Understand the scope of the project: It’s impossible to use a road map if you don’t
know where you are going. Scope provides the software team with a destination.
2. Involve stakeholders in the planning activity: Stakeholders define priorities and
establish project constraints. ​
3. Recognize that the planning is iterative: When the project work begins it’s likely that
few things may change. To accommodate these changes the plan must be adjusted, as a
consequence. ​
4.Estimate based on what you know: The purpose of estimation is to provide an
indication of the efforts, cost, and task duration. If the information is vague or unreliable,
estimates will be equally unreliable.​
5.Consider the risk as you define the plan: The team should define the risks of high
impact and high probability. It should also provide a contingency plan.​
6.Be realistic: The realistic plan helps in completing the project on time including the
inefficiencies and change. ​
7. Adjust granularity as you define the plan: Granularity refers to the level of details that
is introduced as a project plan is developed. It is the representation of the system from
macro to micro level. A “high-granularity” plan provides significant work task detail. A
“low-granularity” plan provides broader work tasks that are planned over longer time
periods. ​
8. Define how you intend to ensure quality: The plan should identify how the software
team intends to ensure quality. If technical reviews are to be conducted, they should be
scheduled.​
9.Describe how you intend to accommodate change: Even the best planning can be
obviated by uncontrolled change. The software team should identify how the changes are to
be accommodated as the software engineering work proceeds. If a change is requested, the
team may decide on the possibility of implementing the changes or suggest alternatives.​
10. Track and monitor the plan frequently and make adjustments if required:
Software projects fall behind schedule one day at a time. Therefore, make sense to track
progress on a daily basis, looking for problem areas and situations in which scheduled work
does not conform to actual work conducted. When shippage is encountered, the plan is
adjusted accordingly.

13

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

✅ Modeling Practices

Definition: Modeling involves creating abstract representations of the system
to better understand and plan how it should be built.

Types of Models:

●​ Structural Models: Class Diagrams, Entity-Relationship Diagrams

●​ Behavioral Models: Sequence Diagrams, Activity Diagrams

●​ Functional Models: Data Flow Diagrams (DFDs), Use Cases

Benefits:

●​ Identifies potential issues early

●​ Improves understanding among team members

●​ Acts as a blueprint for developers

Analysis Modelling Principles:.

1. The information domain of a problem must be represented and
understood
The information domain encompasses the data that flow into the system from end
users, other systems or external devices.

2. The functions that the software performs must be defined.
Software functions provide direct benefit to end users and also provide internal support for
those features that are user visible. Some functions transform data that flow into the system. ​
​
3. The behavior of the software (as a consequence of external events) must
be represented)
The behavior of computer software is driven by its interaction with the external
environment. Input provided by end users, control data provided by an external system, or
monitoring data collected over a network all cause the software to behave in a specific way.

14

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

4. The models that depict information function and behavior must be
partitioned in a manner that uncovers detail in a layered fashion.
Requirements modeling is the first step in software engineering problem solving. It allows
you to better understand the problem and establishes a basis for the solution (design). ​
5. The analysis task should move from essential information toward
implementation detail.
Requirements modeling begins by describing the problem from the end-user’s perspective.
The “essence” of the problem is described without any consideration of how a solution will
be implemented. ​

Design principles are:

1. Design should be traceable to the requirements model.

The design model should translate the information into architecture; a set of subsystems
which implement major functions and a set of component level designs are the realization
of the analysis classes.

2. Always consider the architecture of the system to be built
Software architecture is the skeleton of the system to be built. It affects interfaces, data
structures, program control flow and behavior, the manner in which testing can be
conducted, and the maintainability of the resultant system.

3. Design of data is as important as design of processing functions
Data design is an essential element of architectural design. A well-structured data design
helps to simplify program flow, makes the design and implementation of software
components easier.

4. Interfaces (both internal and external) must be designed with care
The manner in which data flows between the components of a system has much to do
with processing efficiency, error propagation, and design simplicity. A well-designed
interface makes integration easier and assists the tester in validating component
functions.

5. User interface design should be tuned to the needs of the end
user​
The user interface is the visible manifestation of the software. No matter how

15

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

sophisticated its internal functions, no matter how well designed its architecture, a
poor interface design often leads to the perception that the software is “bad”.

6. Component-level design should be functionally independent,
Functional independence is a measure of the “Single-mindedness” of a software
component. The functionality that is delivered by a component should be cohesive-that
is, it should focus on one and only one function or sub function.

7. Components should be loosely coupled to one another and to the
external environment.

Coupling is achieved in many ways- via a component interface, be messaging, through
global data. As the level of coupling increases, the likelihood of error propagation also
increases and the overall maintainability of the software decreases. Therefore,
component coupling should be kept as low as is reasonable.

8. Design representations(models) should be easily understandable
The purpose of design is to communicate information to practioners who will generate
code, to those who will test the software, and to others who may maintain the software
in the future. If the design is difficult to understand, it will not serve as an effective
communication medium.

9. The design should be developed iteratively. With each iteration, the
designer should strive for greater simplicity

Like almost all creative activities, design occurs iteratively. The first iterations work to
refine the design and correct errors, but later iterations should strive to make the design
as simple as possible.

✅ Construction Practices
Definition: The actual process of building the software system through coding,
followed by testing and debugging.

Key Aspects:

●​ Use of proper programming practices and naming conventions

●​ Writing modular and reusable code

16

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Applying unit testing and integration testing

●​ Use of version control tools like Git

Standards:

●​ Follow ISO/IEC coding standards

●​ Use test-driven development (TDD) or behavior-driven development (BDD)

CODING PRINCIPLES ARE AS FOLLOW:-
Preparation Principles: ​
Before you write one line of code, be sure you

1. Understand of the problem you’re trying to solve

2. Understand basic design principles and concepts

3. Pick a programming language that meets the needs of the software to be built and the
environment in which it will operate

4. Select a programming environment that provides tools that will make your work easier

5. Create a set of unit tests that will be applied once the component you code is completed

Coding Principles:
1. As you begin writing code, be sure you:

2. Constrain your algorithms by following structured programming practice.

3. Consider the use of pair programming

4. Select data structures that will meet the needs of the design

5. Understand the software architecture and create interfaces that are consistent with it.

6. Keep conditional logic as simple as possible.

7. Create nested loops in a way that makes the theme easily testable.

8. Select meaningful variable names and follow other local coding standards

17

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

9. Write code that is self-documenting

10. Create a visual layout that aids understanding

Validation Principles: After you’ve completed your first coding pass, be
sure you
1. Conduct a code walkthrough when appropriate

2. Perform unit tests and correct errors you’ve uncovered

3. Refactor the code

✅ Software Deployment Practices

Definition: Deployment is the process of releasing the software to users,
installing it in the target environment, and ensuring it functions correctly.

Deployment Stages:

1.​ Release Preparation: Packaging, configuration, and final testing

2.​ Installation and Setup: Installing on servers or user systems

3.​ Post-Deployment Support: Handling bug fixes, updates, and user feedback

Modern Practices:

●​ Use of CI/CD (Continuous Integration/Continuous Deployment) tools like
Jenkins, GitLab

●​ DevOps practices to automate and monitor deployment

PRINCIPLES OF DEPLOYMENT:-

1. Customer expectations for the software must be managed
Before the software delivery the project team should ensure that all the requirements of
the users are satisfied.

18

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

2. A complete delivery package should be assembled and tested
The system containing all executable software, support data files, tools and support
documents should be provided with beta testing at the actual user side.

3. A support regime must be established before the software is delivered
This includes assigning the responsibility to the team members to provide support to
the users in case of problem.

4. Appropriate instructional materials must be provided to end users
At the end of construction various documents such as technical manual, operations
manual, user training manual, user reference manual should be kept ready. These
documents will help in providing proper understanding and assistance to the user.

5. Buggy software should be fixed first, delivered later.
Sometimes under time pressure, the software delivers low-quality increments with a
warning to the customer that bugs will be fixed in the next release.

Prescriptive process models:
Prescriptive models are well-defined, structured software development
models that guide the step-by-step process of software development. They are
useful when project requirements are clear and stability is required.

✅ 1. Waterfall Model

Definition: The Waterfall Model is a linear and sequential approach where each
phase (requirements, design, implementation, testing, deployment) is completed
before the next begins.Easy to manage due to its rigid structure and
documentation.Works well for projects with fixed and well-understood
requirements.Testing starts late, only after the build phase.

19

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

Advantages:

●​ Simple and easy to use

●​ Well-documented and structured

●​ Ideal for small or well-defined projects

●​ No feedback until final stage
●​ Difficult to handle changes once a phase is complete

Disadvantages:

●​ No flexibility once the project is in the testing phase

●​ No overlapping of stages; each must be completed before the next begins.
●​ Poor model for long or complex projects

●​ Difficult to handle changes in requirements

Applications:
●​ Government and defense projects

●​ Projects with clear, fixed requirements

●​ Simple applications like calculators, tools

✅ 2. Incremental Model

Definition: The Incremental Model develops software in small, manageable parts
(increments). Each increment adds functionality until the final product is complete.Easier to
test and debug.Early delivery of partial functionality.Each increment includes design, coding,
and testing.Useful when requirements are well understood, but may evolve.

Helps reduce risk by identifying issues early.

20

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

Advantages:

●​ Early partial product delivery — some features are usable early in the process.
●​ Easier testing and debugging — smaller pieces of code are tested incrementally.
●​ Flexible to changes — easier to adapt based on feedback from earlier increments.
●​ Lower initial delivery cost — functionality is delivered step-by-step.

Disadvantages:

●​ Requires proper planning and design

●​ Integration can become complex

●​ May not be suitable for large systems with tight deadlines

Applications:

●​ Web applications

●​ E-learning platforms
21

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Projects with evolving requirements

✅ 3. RAD Model (Rapid Application Development)

Definition: RAD focuses on quick development and delivery by using
reusable components, prototyping, and minimal planning. It emphasizes rapid
iterations with user feedback.Very fast development using reusable
components.Requires active user involvement.Best for small to medium-sized
projects

Advantages:

●​ Faster development due to component reuse and parallel tasks.
●​ Customer involvement is high with constant feedback and review.
●​ Prototyping helps refine requirements early in the project.
●​ Highly flexible to changing requirements.

Disadvantages:

●​ Not suitable for large-scale or complex systems

●​ Requires skilled developers and designers

22

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Poor documentation due to rapid pace

Applications:

●​ Short-term projects

●​ Mobile apps, internal tools

●​ UI/UX-heavy applications needing quick changes

✅ 4. Prototyping Model

Definition: The Prototyping Model builds a working prototype early in the process to
understand user requirements. Based on user feedback, the prototype is refined until the final
product is developed.

Encourages user involvement.Reduces risk of misunderstanding requirements.Useful when
requirements are unclear.Prototype may be discarded or evolved into final system

Advantages:

●​ Improves requirement clarity by visualizing the system early.
23

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Reduces misunderstandings between developers and users.
●​ User involvement is high, leading to a better-aligned final product.
●​ Faster identification of missing or unclear features.

Disadvantages:

●​ Prototype may be mistaken for final product

●​ Frequent changes increase cost

●​ Not suitable for large-scale or structured projects

Applications:

●​ Complex systems with unclear requirements

●​ Software involving new technology

●​ User-interface intensive applications

✅ 5. Spiral Model

●​ Definition: The Spiral Model combines features of Waterfall and Prototyping,
focusing on risk analysis. It involves repeated cycles (spirals), each with planning,
risk analysis, development, and evaluation.​
Excellent for large, complex, high-risk projects.Allows changes at any stage.More
costly and complex to manage.

Advantages:

●​ Focuses on risk analysis and mitigation at every phase.
●​ Supports flexible and iterative development.
●​ Well-suited for large, high-risk, and complex projects.
●​ Allows progressive refinement of requirements.​

Disadvantages:

●​ Complex to manage and implement

●​ Expensive for small projects

●​ Requires expertise in risk assessment

24

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

Applications:

●​ Aerospace, military, and safety-critical software

●​ Long-term or high-budget systems

●​ R&D projects

🌀 Agile Software Development

Agile is a flexible, iterative, and collaborative software development methodology.​
Agile is a lightweight and iterative software development methodology focused on
flexibility, customer collaboration, frequent delivery, and responding to change.​
Instead of a rigid plan, Agile encourages continuous improvement, short development
cycles (sprints), and early delivery.Divides work into small units called iterations or sprints
(typically 1–4 weeks).Continuous planning, testing, and integration.

25

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

✅ 2. Core Principles of Agile (Based on Agile Manifesto)

1.​ Individuals and interactions over processes and tools

2.​ Working software over comprehensive documentation

3.​ Customer collaboration over contract negotiation

4.​ Responding to change over following a plan

✅ 3. Importance of Agile

●​ Fast Delivery: Delivers usable software early and frequently.
●​ Customer Satisfaction: Involves customer feedback at every stage.
●​ Flexibility: Easily adapts to changing requirements.
●​ Improved Quality: Regular testing during each iteration.
●​ Better Team Collaboration: Promotes face-to-face communication and teamwork.
●​ Risk Reduction: Problems are identified early, reducing the risk of failure.​

26

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

✅ 4. Agile Process – Key Activities

1.​ Requirement gathering in the form of user stories

2.​ Planning for short time-boxed iterations (called sprints)

3.​ Design and Development in cycles (each sprint produces working software)

4.​ Testing and Review after each sprint

5.​ Retrospective to reflect and improve in the next iteration

🔧 Extreme Programming (XP)

Definition: XP is an Agile method focused on improving software quality and
responsiveness to customer requirements using frequent releases and technical
practices.Prioritizes code simplicity, communication, and continuous
improvement.

Practices include Test-Driven Development (TDD), Pair Programming,
Continuous Integration, and Refactoring.

27

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

✅ Core Practices of XP:

●​ Pair Programming – Two developers code together on the same computer

●​ Test-Driven Development (TDD) – Write tests before coding

●​ Continuous Integration – Code is integrated and tested frequently

●​ Refactoring – Regular code improvement

●​ Small Releases – Deliver functional software often

●​ Simple Design – Avoid unnecessary complexity

✅ Advantages of XP:

●​ High-quality code due to frequent testing and continuous integration.
●​ Enables fast and flexible responses to changing requirements.
●​ Promotes strong team communication through pair programming and stand-ups.
●​ Frequent releases keep customers engaged and informed.

❌ Disadvantages of XP:

●​ Requires high discipline and skilled developers

●​ Continuous feedback may be overwhelming

●​ Not ideal for very large teams or long-term planning

🎯 Applications:

●​ Small to medium-sized software projects

●​ Real-time and evolving applications

●​ Startups needing quick MVP (Minimum Viable Product)​
​

28

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

🧩 Scrum

Definition: Scrum is an Agile framework that organizes development in short
iterations (called sprints), typically lasting 1–4 weeks. The team works
collaboratively to complete selected features during each sprint.

✅ Key Roles in Scrum:

●​ Product Owner: Represents the customer, defines product backlog

●​ Scrum Master: Facilitates the process, removes blockers

●​ Development Team: Self-organizing team that delivers the product

✅ Key Elements

●​ Product Backlog: List of features or requirements

●​ Sprint Backlog: Tasks to be completed in a sprint

●​ Sprint Planning: Decide what to deliver in the sprint

●​ Daily Stand-up (Daily Scrum) : 15-minute daily progress meeting

●​ Sprint Review & Retrospective: Evaluate work and process after each sprint

✅ Advantages of Scrum:
29

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ Faster and incremental delivery of features.
●​ Encourages continuous feedback and improvement.
●​ Quick identification and resolution of problems through daily stand-ups.
●​ Promotes transparency and accountability within the team.

❌ Disadvantages of Scrum:

●​ Not suitable for uncooperative teams

●​ Scope creep can occur if backlog is not managed well

●​ Requires experienced team for best results

🎯 Applications:

●​ Web and mobile app development

●​ Product-based companies with regular releases

●​ Projects requiring frequent updates or customer involvement​

Selection Criteria for Software Process Model
📘 Definition: The selection of a software process model depends on the
nature of the project, requirements, and organizational goals. Choosing the
right model helps ensure efficient development, reduced cost, and timely
delivery.

🔍 Key Selection Criteria:

🔹 1. Project Size and Complexity

●​ Small & simple projects → Waterfall or Incremental model

●​ Large & complex projects → Spiral or Agile models

🔹 2. Clarity of Requirements

●​ Clearly defined and stable → Waterfall model

●​ Unclear or evolving → Prototyping or Agil

🔹 3. Time to Market / Delivery Speed

●​ Short timelines / fast delivery needed → RAD, Agile

30

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

●​ More time available → Waterfall, Spiral

🔹 4. Customer Involvement

●​ Continuous involvement possible → Agile, Scrum, XP

●​ Minimal involvement → Waterfall or Incremental

🔹 5. Risk Management

●​ High-risk projects → Spiral model (strong risk assessment)

●​ Low risk → Incremental or Waterfall

🔹 6. Team Size and Skill Level

●​ Small, skilled team → XP, Agile

●​ Large or varied skill level → Waterfall or Incremental

🔹 7. Budget Constraints

●​ Tight budgets → Incremental, Agile (faster feedback, less rework)

●​ Flexible budget → Spiral (more planning and evaluation)

🔹 8. Flexibility to Changes

●​ Highly dynamic requirements → Agile, Prototyping

●​ Fixed, stable requirements → Waterfall

🔹 9. Need for Rapid Prototyping or UI Focus

●​ If the project requires user interface testing or frequent feedback, use the
Prototyping model or RAD model.

31

Mob No : 9326050669 / 9372072139 | Youtube : @v2vedtechllp|

Insta : v2vedtech | App Link | v2vedtech.com

tel:9326050669
tel:9372072139
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/
https://play.google.com/store/apps/details?id=co.marshal.hnwhp&hl=en_IN
http://www.v2vedtech.com

	​​​Communication Principles are:-
	Planning Principles:-
	Analysis Modelling Principles:.
	1. The information domain of a problem must be represented and understood
	2. The functions that the software performs must be defined.
	4. The models that depict information function and behavior must be partitioned in a manner that uncovers detail in a layered fashion.
	2. Always consider the architecture of the system to be built
	3. Design of data is as important as design of processing functions
	4. Interfaces (both internal and external) must be designed with care
	5. User interface design should be tuned to the needs of the end user​The user interface is the visible manifestation of the software. No matter how sophisticated its internal functions, no matter how well designed its architecture, a poor interface design often leads to the perception that the software is “bad”.
	6. Component-level design should be functionally independent,
	7. Components should be loosely coupled to one another and to the external environment.
	8. Design representations(models) should be easily understandable
	9. The design should be developed iteratively. With each iteration, the designer should strive for greater simplicity
	Preparation Principles: ​Before you write one line of code, be sure you
	Coding Principles:
	Validation Principles: After you’ve completed your first coding pass, be sure you
	1. Customer expectations for the software must be managed
	2. A complete delivery package should be assembled and tested
	3. A support regime must be established before the software is delivered
	4. Appropriate instructional materials must be provided to end users
	5. Buggy software should be fixed first, delivered later.

